
ASP-II for SUPPRESSOR Network Communications • 2.0

Update: 02/23/98 2.16-1 SUPPRESSOR Version 5.4

2.16 NETWORK COMMUNICATIONS

Network communications provide a commander with the capability to transmit intent and
orders to subordinates, and they enable subordinate units to send requests, own-force status
information, and intelligence data up the various command chain hierarchies. Network
communications also connect peers during mission execution. The communications
network consists of the communications equipment belonging to each platform (see
Section 2.7) and each platform’s knowledge about how to communicate with other
platforms. This knowledge consists of the means of communication (satellite uplink,
encrypted teletype, digital data link, two-way landline, or broadcast); the channels,
frequencies or data links to use for the various means; and the message types and formats
(protocols) for each of the different message types.

Real world entities usually belong to multiple command chain hierarchies, utilize various
means of communications, and are members on multiple communications networks.
Suppressor allows the user to place a platform on any number of nets of any user-defined
types. Only one message can be transmitted at a time over a single net; however, two
simultaneous transmissions at the same frequency on different nets will not interfere with
each other. The user defines the connectivity between platforms by arbitrarily assigning
them to nets. In Suppressor, communications can occur between two players who are:

a. in the same command chain, AND
b. within one command chain level of each other, AND
c. on the same communications network.

The above items imply that a communications event only occurs between two players;
either peer-to-peer (same level within the command chain), commander-to-immediate
subordinate, or subordinate to immediate commander.

2.16.1 Functional Element Design Requirements

The design requirements for the network communications functional element are:

a. The model will allow the user to define any number of communications
networks and assign any player with a communications device to one or more
of these networks.

b. Each communications network will be defined as either implicit or explicit.
Implicit networks represent communications over landlines or other direct
connections which are not subject to atmospheric propagation and potential
masking by terrain. Explicit networks represent communications transmitted
through the air and subject to atmospheric attenuation and terrain masking.

c. The model will provide the user with the capability to specify the protocols or
message types that can be transmitted on each type of net. For each protocol, the
user can specify a transmit time and a one-way priority. The transmit time
represents the elapsed time between transmission and receipt of the message.
The priority affects the queuing of messages for the recipient to process.

d. The model will provide a capability for message queueing when the number of
messages and corresponding transmit times exceeds the network capacity.

Network Communications • 2.0 ASP-II for SUPPRESSOR

SUPPRESSOR Version 5.4 2.16-2 Update: 02/23/98

2.16.2 Functional Element Design Approach

Design Element 16-1: Network Connectivity

The communication network(s) that a player belongs to are specified in the SDB in the
NET: sub-item of the SYSTEM: data item corresponding to the participating
communications receiver. A user-chosen integer id and network type name are used to
specify the specific net. The network types are defined in the NET TYPE input, which is
described below in functional element 2.2.1.

Also, each communications receiver on the net has an associated operating frequency.

Design Element 16-2: Implicit Networks

This functional element describes the implicit method for message transmission. This
method is used when messages are sent across a net type listed under the IMPLICIT-NETS
category in the UAN.

When messages are sent across an implicit network, it is assumed that the transmission was
successful from a physical standpoint. No checks are made for whether line of sight exists
between the sender and receiver, or whether the signal-to-noise level meets the required
threshold.

Design Element 16-3: Explicit Networks

This functional element describes the explicit method for message transmission. This
method is used when messages are sent across a net type listed under the EXPLICIT-NETS
category in the UAN.

When messages are sent across an explicit network, a check will be made to determine if
there exists a line of sight between the sender and receiver, and whether the signal-to-noise
calculation exceeds the value of the RECOGNITION-THRESH input data item in the
communications receiver’s TDB CAPABILITY. If these conditions are met, then the
message will have been transmitted. If not, then the IS-TRANSMITTING-MESSAGE-TO
output incident will report that the message was of bad quality.

The formula used for calculating communications signal strength is:

Communications OK if: 10 Log S - N > T

Where:

Aatm Atmospheric attenuation (dB) from TRANSMISSION-LOSS
c Speed of light, 2.99776E+8 m/sec

S
Px 10

Gr Gt Aatm+ +() 10⁄[]
c ν⁄()2⋅ ⋅

4π()2
R

2⋅
--=

N 10 N r N j+()log=

ASP-II for SUPPRESSOR Network Communications • 2.0

Update: 02/23/98 2.16-3 SUPPRESSOR Version 5.4

ν Frequency (hertz) from SDB NET:
Gr Communications receiver gain (dB) from ANTENNA-PATTERN
Gt Communications transmitter gain (dB) from ANTENNA-PATTERN
N Total noise (dB)
Nj Total noise from jammers (watts)
Nr Noise of communications receiver (watts) from RCVR-NOISE
Px Communications transmitter power (watts) from XMTR-POWER
R 3-D range between receiver and transmitter (meters)
S Total signal power (watts)
T Communications receiver RECOGNITION-THRESHOLD (dB)

Design Element 16-4: Message Types

Suppressor defines seven types of messages which can be sent between players. They are:

Intelligence

This is usually the most frequently occurring type of message in a scenario. The content of
these messages is a copy of the stored perception data for a specific target location. It
includes such items as the perceived target location, heading, speed, and the last time this
target was sensed. This message can be about a target that the message sender has himself
sensed, or about a target he has been told about by another player. The recipient of the
message as well as the timing of its sending are defined in the TDB TACTIC data items
ZONE-CHARACTERISTICS, SNR-RPT-GUIDE, MSG-RPT-GUIDE, and INTELL-
REPORT-FREQ.

Assignment

This type of message is sent from a commander to an immediate subordinate to indicate a
target assignment. The contents of the message are the interaction key of the commander
sending the message and a copy of his perception of the target (see ‘Intelligence’ above).
This message is sent as a result of a successful evaluation of the commander’s LETHAL-
ASSIGNMENT-START RESOURCE-ALLOCATION procedure for a particular target-
subordinate pair.

Mode of Control Change

This type of message is sent from a commander to an immediate subordinate to tell the
subordinate to change his own lethal mode of control to himself or to the commander. The
specific action is determined by whether the commander has successfully evaluated his
GUNS-FREE or GUNS-TIGHT RESOURCE-ALLOCATION procedure, respectively.
The contents of this message consist of the interaction key of the commander sending the
message and the value of the new lethal mode of control (either the player type code of the
subordinate or commander, respectively).

Assignment Cancellation

This type of message is sent from a commander to an immediate subordinate to cancel a
target assignment previously made to the subordinate. The contents of the message are the
interaction keys of both the commander sending the message and the target and an identifier
of the perceived target location. This message is sent as the result of a successful evaluation

Network Communications • 2.0 ASP-II for SUPPRESSOR

SUPPRESSOR Version 5.4 2.16-4 Update: 02/23/98

of the commander’s LETHAL-ASSIGNMENT-STOP RESOURCE-ALLOCATION
procedure for the target-subordinate pair.

Assign/Engage Status

This message is sent from a subordinate to an immediate commander to indicate a change
in status of the subordinate. The contents of the message are the interaction keys of the
subordinate sending the message and the perceived target, a copy of the subordinate’s
perception of the target (see ‘Intelligence’ above) and a code which indicates one of the
following about the subordinate:

a. it has not yet acquired the target
b. it has received the assignment and is trying to acquire
c. it is out of ammunition
d. it has finished reloading

Movement Order

This message is sent from a commander to an immediate subordinate to indicate that the
subordinate (or one of his subordinates) should start moving. The contents of this message
are the number of subordinates to scramble, the type of player to scramble, and a code to
indicate the movement plan to be followed by the scrambled players. This message is sent
as the result of a successful evaluation of the commander’s LAUNCH-START
RESORUCE-ALLOCATION procedure.

Cueing Order

This message is sent from a commander to an immediate subordinate to cause the
subordinate to change the heading of one or more of its locations. The order can be to point
the location towards the current target location or to return its heading to that specified in
the SDB. The contents of the message are the location of the subordinate to be cued, the
type of cueing (as described above), and the location, speed, heading, and time of data (if
the type of cueing is target cueing). This message is sent as the result of a commander
successfully executing a RESOURCE-ALLOCATION procedure containing either a
WITH-TGT-CUING-FOR-LOC or WITH-SDB-CUING-FOR-LOC phrase.

Each communications net has the capability to send a subset of these message types.

Design Element 16-5: Message Prioritization

In the SDB NET TYPE data item, the type(s) of message(s) that can be sent across the
named network type are listed, along with their corresponding transmission times
(TRANSMIT-TIME: sub item) and priorities (1-WAY PRIORITY: sub item). The
transmission time is the length of time it takes for a message of the indicated type to
physically reach the intended recipient. The net is considered to be busy and unable to send
additional messages during that time. The priority is a relative measurement of the
importance of the message type. Higher priority values imply higher importance. The
priority is only considered if all available communications nets are currently busy, causing
the message to be placed on a waiting list.

ASP-II for SUPPRESSOR Network Communications • 2.0

Update: 02/23/98 2.16-5 SUPPRESSOR Version 5.4

Design Element 16-6: Message Queuing

In Suppressor, only one message at a time is allowed to be transmitted over a particular
communications net. When a message first needs to be sent and there exists at least one
non-busy net available (to which both the sender and receiver belong and which can support
the type of message to be sent), then Suppressor will immediately transmit the message
over the non-busy net which has the smallest transmission time for the particular type of
message (as defined in the NET TYPE TRANSMIT-TIME: data item).

If all nets are transmitting messages at the moment, then Suppressor will choose the least
busy net (in terms of the number of messages waiting to be sent across it) and create a
waiting list entry for the message. This waiting list entry is then inserted into the chosen
net’s waiting list; which is sorted first by the priority of the message (see functional element
2.2.2), then by the originally scheduled transmission time of the message. When the chosen
net becomes free, it sends the next message in its waiting list.

2.16.3 Functional Element Software Design

Network Connectivity Module Design

The logic to determine whether two players are on the same communications network and
can communicate with each other is implemented in routine SNDMSG:

 *when defining net members:
 *invoke logic to search for specific net;
 *when net not found:
 *allocate specific net;
 *add specific net to list;
 *end of test for net not found.
 *when net member not defined:
 *allocate storage for net member;
 *look up system id and type;
 *look up group id and store;
 *when snr, comm, or jammer transmitter:
 *store data for transmitter;
 *otherwise, receiver:
 *store data for comm or sensor receiver;
 *end of test for receiver or transmitter.
 *add net member to list under player;
 *end of test for net member exists.
 *store net frequency and status as on;
 *invoke logic to get storage for SDB net type buffer;
 *add buffer to list under net member;
 *add buffer to list under specific net;

Implicit Network Module Design

Below is a top-level description of routine YAKKER. Notice that the code assumes that
message transmission quality is always good for implicit communications.

 *begin logic to control communications event:
 *initialize receipt time to game time;
 *look up pointer to message recipient and message type;
 *look up pointer to net coordination header;
 *if (a message is to be sent) then;
 *invoke logic to get reception time from time delay;
 *when recipient is not dead:
 *assume message quality is good;

Network Communications • 2.0 ASP-II for SUPPRESSOR

SUPPRESSOR Version 5.4 2.16-6 Update: 02/23/98

 *when explicit communications:
 *assume quality is bad;
 *invoke logic to find receiver location;
 *invoke logic to calculate signal level at receiver;
 *when any signal strength:
 *calculate commo receiver noise level;
 *invoke logic to calculate jamming noise level;
 *set quality to recognized if threshold exceeded;
 *when operator thinks the commo is being jammed:
 *set operator thinks the commo is being jammed;
 *otherwise operator thinks the commo is not jammed:
 *set operator thinks commo is not jammed;
 *end of test if operator thinks commo is jammed.
 *end of test for any signal strength.
 *store flag and time the operator thinks the commo is
 * being jammed;
 *end of test for implicit or explicit comm.
 *allocate commo results header;
 *write "is transmitting message" incident;
 *when signal quality was not high enough:
 *schedule sender to notice this;
 *when operator thinks the commo is being jammed &
 * there are alt. frequencies:
 *get next available frequency;
 *write out "starts to change freq" message;
 *invoke logic to adjust jammer spots focused at rx;
 *end of test if operator thinks the commo is being
 * jammed & alt. frequencies.
 *otherwise, possibly reset counters due to successful msg:
 *loop, for each specified assign command chain:
 *when recipient is commander on this chain:
 *reset comm. loss times and counters;
 *end of test if recipient is commander on chain.
 *end of loop for each specified assign command chain.
 *end of test for minimum signal quality.
 *schedule player to notice results;
 *end of test for recipient is dead.
 *decrement waiting time by time delay;
 *set the status of transmitter flag to transmitting;
 *end of test for message sent.
 *try to send next message;
 *when end of last transmission:
 *set status in coordination header to not busy;
 *set the status of transmitter flag to not transmitting;
 *otherwise, message has been sent:
 *when beginning of last transmission:
 *invoke logic to schedule end of transmit event;
 *end of test for beginning of last.
 *end of test for end of last.
 *recycle message event if end of transmit;

Explicit Network Module Design

The logic of routine YAKKER in the previous module design description also describes the
top-level algorithm used for determining the quality of an explicit message. The explicit
signal calculation is performed in the YAKSIG module:

The top-level design for subroutine YAKSIG is:

 *begin logic to provide signal level at receiver terminal:
 *look up pointer to commo receiver data;
 *search for net buffer for sender;

ASP-II for SUPPRESSOR Network Communications • 2.0

Update: 02/23/98 2.16-7 SUPPRESSOR Version 5.4

 *when sender/receiver pair not on list:
 *add buffer for sender/receiver pair;
 *end of test for sender/receiver pair.
 *when signal level has not been stored or either is moving:
 *invoke logic to update sender location;
 *look up pointer to commo transmitter data;
 *when edge pointers are null and either moving:
 *invoke logic to check for line of sight;
 *end of test for edge pointers and either moving.
 *when line of sight exists:
 *invoke logic to calculate gain and range;
 *look up transmitted power;
 *account for transmission losses;
 *solve radio equation for received power;
 *end of test for line of sight.
 *end of test for signal level stored.
 *end of logic for YAKSIG.

Message Type Module Design

The software modules which define each of the seven message types are listed in
Table 2.16-1.

The design for the Intelligence message type is implemented in routine SDNMSG:

 *loop, while subs, peers, and commander to be informed:
 *when player is not indirect source:
 *search for pending message buffer;
 *when buffer entry found:
 *copy data into existing perception;
 *otherwise, no pending transmission:
 *make a new copy of perception;
 *send intell report message;

The design for the Assignment message type is found in routine INTRPT:

 *allocate wpn assign message and store pointers;
 *invoke logic to make up an indirect perception;
 *set up data block for output;
 *invoke logic to send wpn assign message;

The design for the Mode of Control Change message type is found in routine EFESUB:

 *allocate MOC message;
 *when MOC is guns-free:

 *set MOC to player type of sub;

TABLE 2.16-1. Software Modules for the Seven Suppressor Message Types.

Modules Data Block (number) Data Items

SNDMSG
INTRPT
EFESUB
CMDCNL
YOOHOO
CMDFUZ
CUELOC

Perceived Target (17)
Assignment (88)
Mode of Control Change (88)
Assignment Cancel (106)
Assign/Engage Status (104)
Movement Order (310)
Cueing Order
(24 case 28)

SDB NET TYPE

Network Communications • 2.0 ASP-II for SUPPRESSOR

SUPPRESSOR Version 5.4 2.16-8 Update: 02/23/98

 *otherwise, MOC is guns-tight:
 *set MOC to player type of cmdr;
 *end of test for type of MOC change.
 *invoke logic to send MOC change message;

The design for the Assignment Cancellation message type is found in routine CMDCNL:

 *loop, while comm nets and existing cancel not found:
 *loop, while waiting list entries and no existing message:
 *set flag when cancel assign, correct sender, receiver;
 *end of loop for waiting list entries.
 *end of loop for comm nets.
 *when no cancellation already waiting to be sent:
 *allocate eng/asg cancel storage;
 *invoke logic to send cancel assignment message;
 *invoke logic to write out data;
 *end of test for existing cancellation message.

The design for the Assign/Engage Status message type is found in routine YOOHOO:

 *search for specific assignment buffer;
 *search for specific commander to send message to;
 *when commander not found and no perception:
 *search for a perceived commander of any kind;
 *end of test for commander and no perception.
 *loop, while specific commander, or list of commanders:
 *allocate assign status message buffer;
 *invoke logic to make a copy of the perception;
 *invoke logic to inform commander;
 *go on to next commander, if one;
 *end of loop for commander(s).

The design for the Movement Order message type is found in routine CMDFUZ:

 *allocate a launch order;
 *send launch message to subordinate;

The design for the Cueing Order message type is found in routine CUELOC:

 *loop, while more "with" phrases:
 *when "with-tgt-cuing-for-loc":
 *when engagement decision type:
 *invoke logic to find cued location;
 *when cued location exists:
 *find the history location block;
 *when this is the first cuing order:
 *allocate and fill initial cuing hist block;
 *end of test for first cuing order.
 *compute unit vector from location to target;
 *cue the location heading;
 *compute and store local up unit vector;
 *invoke logic to write cues-toward-tgt incident;
 *add to location cuing history list;
 *store new cuing angle and time;
 *end of test for existence of cued location.
 *but, when assignment decision type:
 *allocate and fill a subordinate location cuing order;
 *end of tests for decision types.
 *but when, "with-sdb-cuing-for-loc":
 *when emcon or engagement decision type:
 *invoke logic to find cued location;
 *when cued location exists:
 *reset cuing to sdb default if not already there;
 *invoke logic to write resets-cuing incident;

ASP-II for SUPPRESSOR Network Communications • 2.0

Update: 02/23/98 2.16-9 SUPPRESSOR Version 5.4

 *add to location cuing history list;
 *store new cuing angle and time;
 *end of test for existence of cued location.
 *but, when guns-free/tight or assignment decision type:
 *allocate and fill a subordinate location cuing order;
 *end of tests for decision types.

Message Queuing Module Design

The logic of the Suppressor message queuing process is implemented in routine YAKNEX:

 *loop, until all nets are checked or net is picked:
 *loop, while nets left and recipient not found:
 *search for correct net type on list;
 *when net type found:
 *search for recipient on this net;
 *end of test for net type found.
 *end of loop for net types.
 *when recipient perceived to be on this net:
 *set sender's transmitter operational status;
 *when recipient actually on net and the sender's
 * transmitter is on:
 *invoke logic to find delay time;
 *when list is not busy:
 *when net has smaller time delay:
 *choose this net for now;
 *end of test for smaller time delay.
 *otherwise, see just how busy it is:
 *when less than least so far:
 *remember this link;
 *end of test for not so busy.
 *end of test for busy or not.
 *end of test for transmitter on.
 *end of test for recipient on net.
 *end of loop for links.
 *when link not picked:
 *when least busy link available:
 *write out "net busy, wants to talk to" incident;
 *store net pointers in message header;
 *allocate waiting list entry;
 *search for delay time and priority;
 *loop, while insertion point not found:
 *reset pointers to go on to next entry;
 *end of loop to find insertion point.
 *when prior entry exists on waiting list:
 *add to middle or end of list;
 *otherwise, no prior entry exists:
 *add to front of the list;
 *end of test for location on list.
 *end of test for least busy link.
 *otherwise, found a nonbusy link:
 *write out "net free, wants to talk to" incident;
 *schedule communications processing;
 *set link busy and store event ptr;
 *end of test for link picked.

2.16.4 Assumptions and Limitations

• There is only one active operating frequency stored and used for each
communications net, even if different frequencies were specified for the
individual participating communications receivers.

Network Communications • 2.0 ASP-II for SUPPRESSOR

SUPPRESSOR Version 5.4 2.16-10 Update: 02/23/98

• Communications can occur only between two players who are in the same
command chain.

2.16.5 Known Problems or Anomalies

If a player has two or more communications systems on the same net, the simulation can
abort.

